要证明\int_{0}^{\pi} \sin\left(\frac{1}{x}\right) dx > \frac{\pi}{2},可以采用反证法。首先假设\int_{0}^{\pi} \sin\left(\frac{1}{x}\right) dx \leq \frac{\pi}{2}。
考虑到被积函数在区间\left(0, \frac{1}{\pi}\right)和\left(\frac{1}{\pi}, \infty\right)上均为连续函数,可以将积分区间分为两部分:
\int_{0}^{\pi} \sin\left(\frac{1}{x}\right) dx = \int_{0}^{\frac{1}{\pi}} \sin\left(\frac{1}{x}\right) dx + \int_{\frac{1}{\pi}}^{\pi} \sin\left(\frac{1}{x}\right) dx
对于第一个积分\int_{0}^{\frac{1}{\pi}} \sin\left(\frac{1}{x}\right) dx,注意到\sin\left(\frac{1}{x}\right)在\left(0, \frac{1}{\pi}\right)上是单调递减的,且\sin\left(\frac{1}{x}\right) > 0。因此:
\int_{0}^{\frac{1}{\pi}} \sin\left(\frac{1}{x}\right) dx > \int_{0}^{\frac{1}{\pi}} 0 dx = 0
对于第二个积分\int_{\frac{1}{\pi}}^{\pi} \sin\left(\frac{1}{x}\right) dx,注意到\sin\left(\frac{1}{x}\right)在\left(\frac{1}{\pi}, \pi\right)上是单调递减的,且\sin\left(\frac{1}{x}\right) < 0。因此:
\int_{\frac{1}{\pi}}^{\pi} \sin\left(\frac{1}{x}\right) dx < \int_{\frac{1}{\pi}}^{\pi} 0 dx = 0
综合以上两个不等式,得到:
\int_{0}^{\pi} \sin\left(\frac{1}{x}\right) dx > 0
然而,这与我们的假设\int_{0}^{\pi} \sin\left(\frac{1}{x}\right) dx \leq \frac{\pi}{2}矛盾。因此,我们的假设是错误的,即\int_{0}^{\pi} \sin\left(\frac{1}{x}\right) dx > \frac{\pi}{2}成立。