如图量子力学耦合谐振子题,为什么用质心坐标+相对坐标做出来的答案和旋转变换的答案不一样?
2023-08-17 阅读 30
在量子力学中,我们经常使用质心坐标和相对坐标来描述多体系统。质心坐标是描述整个系统的位置和动量的坐标,而相对坐标则是描述两个体之间相对位置和动量的坐标。
当我们将耦合谐振子问题转换到质心坐标和相对坐标时,我们可以得到一个耦合谐振子的哈密顿量。通过求解这个哈密顿量的本征值问题,我们可以得到能级和波函数。
然而,如果我们对耦合谐振子进行旋转变换,即对系统进行一个坐标轴的旋转,那么质心坐标和相对坐标的定义会发生变化。这意味着在新的坐标系下,原来的质心坐标和相对坐标的表达式会有所不同。
因此,用质心坐标+相对坐标做出来的答案和旋转变换后的答案不一样是正常的。这是因为在不同的坐标系下,系统的描述方式发生了变化,所以得到的结果也会有所不同。
需要注意的是,无论使用哪种描述方式,我们得到的结果应该是等价的。也就是说,通过适当的变换,我们应该能够将质心坐标+相对坐标的描述转换为旋转变换的描述,或者反过来。这个等价性是量子力学中的基本原理之一,称为坐标变换的等价性。
综上所述,质心坐标+相对坐标和旋转变换的描述方法在数学上可能不同,但它们应该能够给出等价的结果。如果你发现两种描述方法得到的答案不一样,可能是在计算过程中出现了误差或者错误,建议仔细检查计算过程。
更新于 2023年08月17日