在匀加a电梯内部有光滑的长为l的一斜面斜面顶端上有一小球静止下落求小球的加速度及下滑至底端所需时间?
2024-03-13 阅读 12
根据题意,小球在斜面上静止下落,说明小球受到的合力沿斜面方向。小球受到的合力可以分解为沿斜面方向的分力和垂直斜面方向的分力。设小球的质量为m,重力加速度为g,则沿斜面方向的合力为ma,垂直斜面方向的合力为mg。
沿斜面方向的合力可以表示为ma = mg*sinθ,其中θ为斜面与水平方向的夹角。
解得加速度a = g*sinθ。
小球下滑至底端所需的时间可以通过动能定理来计算。小球从斜面顶端下滑到底端,高度变化为l*sinθ,重力做功,动能定理为:mgh = 1/2mv^2,其中v为小球下滑至底端的速度。
解得v = sqrt(2gh)。
小球下滑至底端所需的时间t可以通过速度除以加速度得到,即t = v/a = sqrt(2h/g)/sinθ。
更新于 2024年11月21日